MicroRNAs in Neural Stem Cells and Neurogenesis

نویسندگان

  • Hironori Kawahara
  • Takao Imai
  • Hideyuki Okano
چکیده

MicroRNA (miRNA) is a type of short-length (~22 nt) non-coding RNA. Most miRNAs are transcribed by RNA polymerase II and processed by Drosha-DGCR8 and Dicer complexes in the cropping and dicing steps, respectively. miRNAs are exported by exportin-5 from the nucleus to the cytoplasm after cropping. Trimmed mature miRNA is loaded and targets mRNA at the 3' or 5' untranslated region (UTR) by recognition of base-pairing in the miRNA-loaded RISC, where it is involved in gene silencing including translational repression and/or degradation along with deadenylation. Recent studies have shown that miRNA participates in various biological functions including cell fate decision, developmental timing regulation, apoptosis, and tumorigenesis. Analyses of miRNA expression profiles have demonstrated tissue- and stage-specific miRNAs including the let-7 family, miR-124, and miR-9, which regulate the differentiation of embryonic stem cells and/or neurogenesis. This review focuses on RNA-binding protein-mediated miRNA biogenesis during neurogenesis. These miRNA biogenesis-relating proteins have also been linked to human diseases because their mutations can cause several nervous system disorders. Moreover, defects in core proteins involved in miRNA biogenesis including Drosha, DGCR8, and Dicer promote tumorigenesis. Thus, the study of not only mature miRNA function but also miRNA biogenesis steps is likely to be important.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P111: Effect of Human Neural Stem Cells on Neural Hyperactivity in Kindeling Rat Models

The excessive electrical activity of neurons is reported in many diseases including: Parkinson's disease, Alzheimer's disease, and Epilepsy. Electrical overactivity in hippocampus accelerates the depletion of neural stem cell (NSC) and impairs the neurogenesis in hippocampus. It is believed that neurogenesis in hippocampus improves the cognitive functions. In this experiment, we use kindled mod...

متن کامل

Adult Hippocampal Neurogenesis and Memory

Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...

متن کامل

Adult Hippocampal Neurogenesis and Memory

Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...

متن کامل

Derived Mesenchymal Stem Cells in Addiction Related Hippocampal Damages

The brain is an important organ that controls all sensory and motor actions, memory, and emotions. Each anatomical and physiological modulation in various brain centers, results in psychological, behavioral, and sensory-motor changes. Alcohol and addictive drugs such as opioids and amphetamines have been shown to exert a great impact on brain, specifically on the hippocampus. Emerging evidence ...

متن کامل

Dynamic Roles of microRNAs in Neurogenesis

MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression at the post-transcriptional level by mediating mRNA degradation or translational inhibition. MiRNAs are implicated in many biological functions, including neurogenesis. It has been shown that miRNAs regulate multiple steps of neurogenesis, from neural stem cell proliferation to neuronal differentiation and maturation. Mi...

متن کامل

MicroRNA regulation of neural stem cells and neurogenesis.

MicroRNAs are a class of small RNA regulators that are involved in numerous cellular processes, including development, proliferation, differentiation, and plasticity. The emerging concept is that microRNAs play a central role in controlling the balance between stem cell self-renewal and fate determination by regulating the expression of stem cell regulators. This review will highlight recent ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2012